Q1.

		6 (a)		greater binding energy gives rise to release of energyso must be yttrium			[2]
		(1	b)		probability of decay			[2]
		(0	c)	(i)1	A = λ N 3.7 × 10 ⁶ × 365 × 24 × 3600 = 0.025N N = 4.67 × 10 ¹⁵	C1		[3]
				(i)2	mass = 0.09 x (4.67 x 10 ¹⁵)/(6.02 x 10 ²³) = 6.98 x 10 ⁻¹⁰ kg	C1 A1		[2]
				(ii)	$A = A_0 e^{\gamma t}$ $A/A_0 = e^{0.025t}$ = 0.88			[2]
Q2.								
8	(a)		Ss	hown at the peak		B1	[1]
	(b)	(i) (ii)	1 bind	and U on right of peak in correct relative positions ding energy of U-235 = 2.8649 x 10 ⁻¹⁰ J ding energy of Ba-144 = 1.9211 x 10 ⁻¹⁰ J		B1	[1]
				bine	ding energy of Ba-144 = 1.9211 x 10 3 ding energy of Kr-90 = 1.2478 x 10 ⁻¹⁰ J ergy release = 3.04 x 10 ⁻¹¹ J (-1 if 1 or 2 s.f.)		C2 A1	[2]
				2 E =	mc ²		C1	[3]
			(iii		neutrons are single particles,		A1	[2]
					neutrons have no binding energy per nucleon	Total	B1	[1] [8]
Q3.								
	7	(a)		corre	e levelling out (at 1.4 μ g) act shape judged by masses at $nT_{\frac{1}{2}}$ econd mark, values must be marked on y -axis)		M1 A1	[2]
		(b)	(i)		$(1.4 \times 10^{-6} \times 6.02 \times 10^{23})/56$ 1.5×10^{16}		C1 A1	[2]
			(ii)		$n2/(2.6 \times 3600)$ (= 7.4×10^{-5} s ⁻¹) 1.11×10^{12} Bq		C1 C1 A1	[3]
		(c)			of original mass of Manganese remains		C1	
				t = 8	= exp(-ln2 × t/2.6) 63 hours of 1/9, giving answer 8.24 hrs scores 1 mark]		A1	[2]

Q4.

M1 A1	[2]	
C1 A1	[2]	
C1 C1 C1 A1	[4]	
A1	[1]	
B1 B1	[2]	
	B1 B1 B1 C1 C1	[3]
	B1 B1	[1] [1]
	C1 C1 C1	[<mark>4</mark>]
	C1 A1 C1 C1 A1 A1 A1	A1 [2] C1

Q7.

	0	(a)			mentum so same energy		A1	[2]
		(b)	(i)	(Δ) E	= $(\Delta)mc^2$ = $1.2 \times 10^{-28} \times (3.0 \times 10^8)^2$ = 1.08×10^{-11} J		C1 A1	[2]
			(ii)	E λ	= hc / λ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (1.08 \times 10^{-11})$ = 1.84×10^{-14} m		C1 A1	[2]
			(iii)		= h/p = $(6.63 \times 10^{-34}) / (1.84 \times 10^{-14})$ = 3.6×10^{-20} N s		C1 A1	[2]
Q8	•							
8	(a) (i)) nu	mber	= $(5.1 \times 10^{-6} \times 6.02 \times 10^{23}) / 241$ = 1.27×10^{16}	C1 A1	[2]	à.
		(ii)	5.9		$^{5} = \lambda \times 1.27 \times 10^{16}$ $5 \times 10^{-11} \mathrm{s}^{-1}$	C1 A1	[2]	
		(iii)	4.6 t _{1/2}	= 1.	$0^{-11} \times t_{\frac{1}{2}} = In2$ $49 \times 10^{10} s$ 70 years	C1 A1	[2]	ĺ
	(b) sa	ample	e / acti	vity would decay appreciably whilst measurements are being made	В1	[1]	
Q9								
8	(a	a) (i	i) Fe	e shov	vn near peak	A1		[1]
		(ii	i) Zı	show	n about half-way along plateau	A1		[1]
		(iii	i) H	show	n at less than 0.4 of maximum height	A1		[1]
	(b) (i			large nucleus breaks up / splits nuclei / fragments of approximately equal mass	M1 A1		[2]
		(ii			energy of nucleus = $B_E \times A$ energy of parent nucleus is less than sum of binding energies	B1		
				fragn		B1		[2]

Q10.

8	(a)	energy required to separate nucleons in a <u>nucleus</u> to infinity	M1 A1	[2]
	(b)	$1u = 1.66 \times 10^{-27} \text{ kg}$ $E = mc^2$ $= 1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ $= 1.49 \times 10^{-10} \text{ J}$	C1 M1	
		= $(1.49 \times 10^{-10}) / (1.6 \times 10^{-13})$ = 930 MeV	M1 A0	[3]
	(c)	(i) $\Delta m = 2.0141 \text{u} - (1.0073 + 1.0087) \text{u}$ = $-1.9 \times 10^{-3} \text{u}$	C1	
		binding energy = $1.9 \times 10^{-3} \times 930$ = 1.8MeV	A1	[2]
		(ii) $\Delta m = (57 \times 1.0087u) + (40 \times 1.0073u) - 97.0980u$	C1	
		= (-)0.69 u binding energy per nucleon = (0.69 × 930) / 97 = 6.61 MeV	C1 A1	[3]
Q11				
9	(a)	(i) either probability of decay (of a nucleus) per unit time or $\lambda = (-)(dN/dt) / N$ (-)dN/dt and N explained	M1 A1 (M1) (A1)	[2]
		(ii) in time $t_{\%}$, number of nuclei changes from N_0 to $\frac{1}{2}N_0$ $\frac{1}{2} = \exp(-\lambda t_{\%})$ or $2 = \exp(\lambda t_{\%})$ In $(\frac{1}{2}) = -\lambda t_{\%}$ and In $(\frac{1}{2}) = -0.693$ or In $2 = \lambda t_{\%}$ and In $2 = 0.693$ 0.693 = $\lambda t_{\%}$	B1 B1 B1 A0	[3]
	(b)	228 = 538 exp(-8λ) λ = 0.107 (hours ⁻¹) $t_{\frac{1}{2}}$ = 6.5 hours (do not allow 3 or more SF)	C1 C1 A1	[3]
	(c)	e.g. random nature of decay background radiation daughter product is radioactive (any two sensible suggestions 1 each)	R2	[2]

Q12.

8 (a) <u>nuclei</u> having same number of protons/proton (atomic) number different numbers of neutrons/neutron number (allow second mark for nucleons/nucleon number/mass number/atomic mass if made clear that same number of protons/proton number)	B1 B1	[2]
(b) probability of decay per unit time is the decay constant	C1	
$\lambda = \ln 2 / t_{\frac{1}{2}}$ = 0.693 / (52 × 24 × 3600) = 1.54 × 10 ⁻⁷ s ⁻¹	C1 A1	[3]
(c) (i) $A = A_0 \exp(-\lambda t)$ $7.4 \times 10^6 = A_0 \exp(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600)$ $A_0 = 9.8 \times 10^6 \text{ Bq}$ (alternative method uses 21 days as 0.404 half-lives)	C1 A1	[2]
(ii) $A = \lambda N$ and mass = $N \times 89 / N_A$ mass = $(9.8 \times 10^6 \times 89) / (1.54 \times 10^{-7} \times 6.02 \times 10^{23})$	C1	
$= 9.4 \times 10^{-9} g$	A1	[2]
Q13. 8 (a) two (light) nuclei combine	M1	
8 (a) two (light) nuclei combine to form a more massive nucleus	A1	[2]
(b) (i) $\Delta m = (2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$ = $5.33 \times 10^{-3} \text{ u}$ energy = $c^2 \times \Delta m$ = $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2$ = $8.0 \times 10^{-13} \text{ J}$	C1 C1	[3]
 (ii) speed/kinetic energy of proton and deuterium must be very large so that the nuclei can overcome electrostatic repulsion 	B1 B1	[2]
Q14.		
8 (a) energy is given out / released on formation of the α -particle (or reverse argu-	iment) M1	
either $E = mc^2$ so mass is less or reference to mass-energy equivalence	A1	[2]
(b) (i) mass change = $18.00567 u - 18.00641 u$	C1	ro1
= 7.4×10^{-4} u (sign not required)	A1	[2]
(ii) energy = $c^2 \Delta m$ = $(3.0 \times 10^8)^2 \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27}$ = 1.1×10^{-13} J (allow use of u = 1.67×10^{-27} kg) (allow method based on 1u equivalent to 930 MeV to 933 MeV)	C1 A1	[2]
(iii) either mass of products greater than mass of reactants this mass/energy provided as kinetic energy of the helium-4 nucle or both nuclei positively charged energy required to overcome electrostatic repulsion	eus A1 (M1) (A1)	[2]

Q15.

8 ((a)		bability unit tim			••••••		[2]	
((b)	A :	= λN .	(ignore sign))		B1	[1]	
					2				
***	(c) (i) (ii) (iii	l n nur) λΤ _{1/2} λ =	nber = 0.69 = 0.693	ns $41.7 \times N_A = (2.5 \times 10^{25}) / (3)$ 7.56 = 0.0124 $7.0124 \times 1.67 = 0.0124$	= 2.5×10^{2} 1.5×10^{21}) s ⁻¹	⁵ molecules = 1.67 × 10 ⁴	A1 A1	[5]	
Q16.									
6	(a)	(i)	either	probability of per unit time	decay or	$dN/dt = (-)\lambda N$ OR A with symbols explained	= (-)λN	1	[2]
		(ii)	(paren nucleu	r energy of α t) nucleus less s more likely t Radium-224	s stable	eans		0 1 1 1	[3]
	(b)	(i)	either .	$\lambda = \ln 2/3.6$ = 0.193	or	$\lambda = \ln 2/3.6 \times 24 \times 3$ = 2.23 x 10 ⁻⁶	600	1	
			unit	day -1		s ⁻¹		1	[2]
			(one si	ig.fig., -1, allo	w λ in hr ⁻¹)				
		3 5	= 6.0	.24 x 10 ⁻³)/224 2 x 10 ¹⁸	4} x 6.02 x	10 ²³		1	
			activity	$= 2.23 \times 10^{-6}$ $= 1.3 \times 10^{13}$		018		1 1	[4]
	(c)	0.1 = n = 3.		. n)	es 1 mark			1	[2]

Q17.

7	(a)(i)	energy required to separate the nucleons in a nucleusnucleons separated to infinity / completely	M1 A1		[2]
	(ii)	S shown at peak	B1		[1]
	(b)(i)	4	A1		[1]
	(ii)1	. idea of energy as product of <i>A</i> and energy per nucleon energy = (8.37 × 142 + 8.72 × 90) – 235 × 7.59 = 1189 +785 – 178	C1		
		= 190 MeV(-1 for each a.e.)	A2		[3]
	2	2. energy = mc^2 1 MeV = 1.6×10^{-13} J energy = $(190 \times 1.6 \times 10^{-13}) / (3.0 \times 10^8)^2$	C1 C1		
		$= 3.4 \times 10^{-28} \text{ kg}$	A1		[3]
Q18	3.				
8	(a) (i)	either number = $6.02 \times 10^{23} \times (\{2.65 \times 10^{-6}\}/234)$ or number = $(2.65 \times 10^{-9})/(234 \times 1.66 \times 10^{-27})$ = 6.82×10^{15}		C1 A1	[2]
	(ii)	$A = \lambda N$ $604 = \lambda \times 6.82 \times 10^{15}$ $\lambda = 8.86 \times 10^{-14} \text{ s}^{-1}$		C1 A1	[2]
	(iii)	$T_{1/2} = \ln 2/\lambda$ = 7.82 x 10 ¹² s = 2.48 x 10 ⁵ years		C1 A1	[2]
	(b) hal	f-life is (very) long (compared with time of counting)		B1	[1]
	(c) the	re would be appreciable decay of source during the taking of measurements		B1	[1]

Q19.

7	(a)	ene	rgy req	uired to (completely) separ	ate the nucleons (in a nucleus)B1	[1]
	(b)	(i)	U labe Ba and	lled near right-hand end of d Kr in approximately correc	line	[2]
		(ii)			B1	
			or	binding energy of U < bind E_B of U < E_B of (Ba + Kr).	B1	[2]
	(c)	Kry	pton-92	reduced to 1/8 in 9 s	M1	
		in 9 so, OR	approx	little decay of Barium-141 imately 9 s	M1	[3]
		2Kr	= 0.231	or $\lambda_{Ba} = 6.42 \times 10^{-4}$	(M1)	
		8 =	$e^{-\lambda B \times t}/e$	-λK×t	(C1)	
		t = 9	9.0 s		(A1)	

Q20.

8	(a)	neutron is a single nucleon / particleB1	[1]
	(b)	binding energy = $4 \times 7.07 \times 1.6 \times 10^{-13}$	
		binding energy = $c^2 \Delta m$	
		$4.52 \times 10^{-12} = (3.0 \times 10^8)^2 \times \Delta m$ $\Delta m = 5.03 \times 10^{-29} \text{ kg}$ A1	[3
	(c)	(i) fusion(do not allow fussion)B1	[1
		(ii) (2 × 1.12) + 3x = 28.28	
		x = 2.78 MeV per nucleon A1 (use of +17.7 gives $x = 14.6 MeV$, allow 1 mark only)	[3

[Total: 8]

Q21.

8	(a)	(constant) probability of decay per unit time (reference to decay of isotope / mass / sample / nuclide, allow max 1 mark)		[2]
	(b)	either when time = $t_{\%}$, $N = \frac{1}{2}N_0$ or $\frac{1}{2}N_0 = N \exp(-\lambda t_{\%}) t_{\%}$ either $2 = \exp(\lambda t_{\%})$ or $\frac{1}{2} = \exp(-\lambda t_{\%})$ (taking logs), $\ln 2 = 0.693 = \lambda t_{\%}$	M1	[3]
	(c)	$A = \lambda N$ $1.8 \times 10^5 = N \times (0.693 / \{1.66 \times 10^8\})$ $N = 4.3 \times 10^{13}$ mass = $60 \times (N/N_A)$ or $60 \times N \times u$		
		= $(60 \times 4.3 \times 10^{11}) / (6.02 \times 10^{23})$ = 4.3×10^{-9} g	A1	[3]
			[Tot	al: 8]
Q22	•			
8	(a)	splitting of a heavy nucleus (not atom/nuclide) into two (lighter) nuclei of approximately same mass	M1 A1	[2]
	(b)	$_{0}^{1}$ n $_{2}^{4}$ He (allow $_{2}^{4}\alpha$) $_{3}^{7}$ Li	M2 A1	[3]
	(c)	emitted particles have kinetic energy range of particles in the control rods is short / particles stopped in rods / lose kinetic energy in rods kinetic energy of particles converted to thermal energy	B1 B1 B1	[3]
Q23				
8	(a)	(i) time for initial number of nuclei/activity to reduce to one half of its initial value	M1 A1	[2]
		(ii) $\lambda = \ln 2/(24.8 \times 24 \times 3600)$ = 3.23 × 10 ⁻⁷ s ⁻¹	M1 A0	[1]
	(b)	(i) $A = \lambda N$ $3.76 \times 10^6 = 3.23 \times 10^{-7} \times N$ $N = 1.15 \times 10^{13}$	C1 A1	[2]
		(ii) $N = N_0 e^{-\lambda t}$ = 1.15 × 10 ¹³ × exp(-{ln 2 × 30}/24.8) = 4.97 × 10 ¹²	C1 A1	[2]
	(c)	ratio = $(4.97 \times 10^{12})/(1.15 \times 10^{13} - 4.97 \times 10^{12})$ = 0.76	C1 A1	[2]

Q24.

8	(a)	(i)	probability of decay (of a nucleus) per unit time	M1 A1	[2]
		(ii)	$\lambda t_{\frac{1}{2}} = \ln 2$ $\lambda = \ln \frac{2}{(3.82 \times 24 \times 3600)}$ $= 2.1 \times 10^{-6} \text{ s}^{-1}$	M1 A0	[1]
	(b)	20 N	$= \lambda N$ $00 = 2.1 \times 10^{-6} \times N$ $= 9.5 \times 10^{7}$ $= 9.5 \times 10^{25} \times 10^{25$	C1 C1	
		rai	tio = $(2.5 \times 10^{25})/(9.5 \times 10^7)$ = 2.6×10^{17}	A1	[3]
Q25					
8	(a)	(i)	x = 2	A1	[1]
		(ii)	either beta particle or electron	B1	[1]
	(b)	(i)	mass of separate nucleons = {(92 × 1.007) + (143 × 1.009)} u = 236.931 u binding energy = 236.931 u - 235.123 u	C1 C1	
			= 1.808u	A1	[3]
		(ii)	$E = mc^{2}$ energy = 1.808 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ² = 2.7 × 10 ⁻¹⁰ J binding energy per nucleon = (2.7 × 10 ⁻¹⁰) / (235 × 1.6 × 10 ⁻¹³) = 7.18 MeV	C1 C1 M1 A0	[3]
	(c)	en	ergy released = (95 × 8.09) + (139 × 7.92) – (235 × 7.18) = 1869.43 – 1687.3	C1	
		(al	= 182 MeV llow calculation using mass difference between products and reactants)	A1	[2]
Q26					
8	(a		nergy to separate nucleons (in a nucleus) eparate to infinity	M1 A1	[2]
	(b) (i)) fission	B1	[1]
		(ii)	1. U: near right-hand end of line	B1	[1]
			2. Mo: to right of peak, less than 1/3 distance from peak to U	B1	[1]
			3. La: $0.4 \rightarrow 0.6$ of distance from peak to U	B1	[1]

(iii) 1. right-hand side, mass = 235.922 u mass change = 0.210 u A1 [2]

2. energy =
$$mc^2$$
 C1
= $0.210 \times 1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ C1
= 3.1374×10^{-11} J C1
= 196 MeV (need 3 s.f.) A1 [3] (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV or 932 MeV, allow 2/3) (use of 1.67×10^{-27} not 1.66×10^{-27} scores max. 2/3)

Q27.

8 (a) probability of decay (of a nucleus)/fraction of number of nuclei in sample that decay M1 per unit time A1 [2] A1 [2]

(b) (i) number =
$$(1.2 \times 6.02 \times 10^{23}) / 235$$
 C1
= 3.1×10^{21} A1 [2]

© Cambridge International Examinations 2013

Page 5	Mark Scheme	Syllabus	Paper
1	GCE A LEVEL – October/November 2013	9702	43

(ii)
$$N = N_0 e^{-\lambda t}$$
 negligible activity from the krypton B1 for barium, $N = (3.1 \times 10^{21}) \exp(-6.4 \times 10^{-4} \times 3600)$ C1 activity $= \lambda N$ $= 6.4 \times 10^{-4} \times 3.1 \times 10^{20}$ C1 $= 2.0 \times 10^{17} \text{ Bq}$ A1 [4]

Q28.

10 (a) energy required to separate the nucleons (in a nucleus) to infinity (allow reverse statement)

(b) (i)
$$\Delta m = (2 \times 1.00867) + 1.00728 - 3.01551$$
 C1 $= 9.11 \times 10^{-3} \text{ u}$ C1 binding energy $= 9.11 \times 10^{-3} \times 930$ $= 8.47 \text{ MeV}$ (allow $930 \text{ to } 934 \text{ MeV so answer could be in range } 8.47 \text{ to } 8.51 \text{ MeV}$) (allow 2 s.f.)

(ii) $\Delta m = 211.70394 - 209.93722$ C1 $= 1.76672 \text{ u}$ binding energy per nucleon $= (1.76672 \times 930)/210$ C1 $= 7.82 \text{ MeV}$ (allow $930 \text{ to } 934 \text{ MeV so answer could be in range } 7.82 \text{ to } 7.86 \text{ MeV}$) (allow 2 s.f.)

(c) $\frac{\text{total}}{\text{total}}$ binding energy of barium and krypton is greater than binding energy of uranium M1 $= (2)$ C29.

9 (a) $\frac{\text{time for number of atoms/nuclei/activity (of the isotope)}}{\text{to be reduced to one half (of its initial value)}}$ M1 $= (2)$ C1 $= (2$

© Cambridge International Examinations 2014

 $= 3.3 \times 10^{25}$

(ii) number of water molecules in 1.0 kg = $(6.02 \times 10^{23})/(18 \times 10^{-3})$

ratio = $(3.3 \times 10^{25})/(4.6 \times 10^8)$ $= 7.2 (7.3) \times 10^{16}$

www.maxpapers.com

C1

A1

[2]

M1

Page 5	Mark Scheme	Syllabus	Paper	1
, , , , , , , , , , , , , , , , , , ,	GCE A LEVEL – May/June 2014	9702	42	
(c) $A = A_0 \in$	$e^{-\lambda t}$ and $\lambda t_{1/2} = \ln 2$		C1	
170 = 46	60 exp (-{In 2 t}/8.1)		C1	
t = 11.6	days (allow 2 s.f.)		A1	[3]

9 (a) 'light' nuclei combine to form 'heavier' nuclei B1 [1]

(b) (i) either energy =
$$c^2 \Delta m$$
or energy = $(3.00 \times 10^8)^2 \times 1.66 \times 10^{-27}$
energy = 1.494×10^{-10} C1
= $(1.494 \times 10^{-10})/(1.60 \times 10^{-13})$
= 934 MeV (3 s.f.)

An = $(2.01356 + 3.01551) - (4.00151 + 1.00867)$

(ii)
$$\Delta m = (2.01356 + 3.01551) - (4.00151 + 1.00867)$$

= 5.02907 - 5.01018
= 0.01889 u

energy =
$$0.01889 \times 934$$

= $17.6 \text{MeV} (allow 2 \text{ s.f.})$ A1 [2]

Q31.

9 (a) activity =
$$(1.7 \times 10^{14})/(2.5 \times 10^{6})$$

= $6.8 \times 10^{7} \text{ Bq kg}^{-1}$ A1 [1]

(b) (i) energy released per second in 1.0 kg of steel
$$= 6.8 \times 10^{7} \times 0.067 \times 1.6 \times 10^{-13} \\ = 7.3 \times 10^{-7} \text{ J}$$
 B1 [1]

© Cambridge International Examinations 2014

Page 5	Mark Scheme	Syllabus	Paper	
	Cambridge International AS/A Level - October/November 2014		43	
(ii) this is a very small quantity of energy so steel will not be warm		B1	[1]
(iii) $A = A_0 e^{-\lambda t} \frac{\text{and}}{\text{and}} \lambda t_{\frac{1}{2}} = \ln 2$ $400 = (6.8 \times 10^7) \exp(-[\ln 2 \times t]/92)$		C1 C1	
	t = 1600 years		A1	
	or			
	$A = A_0/2^n$ n = 17.4 $t = 17.4 \times 92 = 1600 \text{ years}$		(C1) (C1) (A1)	[3]