Q1. | | | 6 (| a) | | greater binding energy gives rise to release of energyso must be yttrium | | | [2] | |-----|---|-----|-------------|--------|---|----------|----------------|------------| | | | (1 | b) | | probability of decay | | | [2] | | | | (0 | c) | (i)1 | A = λ N
3.7 × 10 ⁶ × 365 × 24 × 3600 = 0.025N
N = 4.67 × 10 ¹⁵ | C1 | | [3] | | | | | | (i)2 | mass = 0.09 x (4.67 x 10 ¹⁵)/(6.02 x 10 ²³)
= 6.98 x 10 ⁻¹⁰ kg | C1
A1 | | [2] | | | | | | (ii) | $A = A_0 e^{\gamma t}$
$A/A_0 = e^{0.025t}$
= 0.88 | | | [2] | | Q2. | | | | | | | | | | 8 | (| a) | | Ss | hown at the peak | | B1 | [1] | | | (| b) | (i)
(ii) | 1 bind | and U on right of peak in correct relative positions
ding energy of U-235 = 2.8649 x 10 ⁻¹⁰ J
ding energy of Ba-144 = 1.9211 x 10 ⁻¹⁰ J | | B1 | [1] | | | | | | bine | ding energy of Ba-144 = 1.9211 x 10 3
ding energy of Kr-90 = 1.2478 x 10 ⁻¹⁰ J
ergy release = 3.04 x 10 ⁻¹¹ J (-1 if 1 or 2 s.f.) | | C2
A1 | [2] | | | | | | 2 E = | mc ² | | C1 | [3] | | | | | (iii | | neutrons are single particles, | | A1 | [2] | | | | | | | neutrons have no binding energy per nucleon | Total | B1 | [1]
[8] | | Q3. | | | | | | | | | | | 7 | (a) | | corre | e levelling out (at 1.4 μ g) act shape judged by masses at $nT_{\frac{1}{2}}$ econd mark, values must be marked on y -axis) | | M1
A1 | [2] | | | | (b) | (i) | | $(1.4 \times 10^{-6} \times 6.02 \times 10^{23})/56$
1.5×10^{16} | | C1
A1 | [2] | | | | | (ii) | | $n2/(2.6 \times 3600)$ (= 7.4×10^{-5} s ⁻¹)
1.11×10^{12} Bq | | C1
C1
A1 | [3] | | | | (c) | | | of original mass of Manganese remains | | C1 | | | | | | | t = 8 | = exp(-ln2 × t/2.6) 63 hours of 1/9, giving answer 8.24 hrs scores 1 mark] | | A1 | [2] | # Q4. | M1
A1 | [2] | | |----------------------|----------------------------|--------------------| | C1
A1 | [2] | | | C1
C1
C1
A1 | [4] | | | A1 | [1] | | | B1
B1 | [2] | | | | | | | | B1
B1
B1
C1
C1 | [3] | | | | | | | B1
B1 | [1]
[1] | | | C1
C1
C1 | [<mark>4</mark>] | | | C1 A1 C1 C1 A1 A1 A1 | A1 [2] C1 | Q7. | | 0 | (a) | | | mentum so same energy | | A1 | [2] | |----|----|-------|-------------------------|--------------|--|----------|----------|-----| | | | (b) | (i) | (Δ) E | = $(\Delta)mc^2$
= $1.2 \times 10^{-28} \times (3.0 \times 10^8)^2$
= 1.08×10^{-11} J | | C1
A1 | [2] | | | | | (ii) | E
λ | = hc / λ
= $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (1.08 \times 10^{-11})$
= 1.84×10^{-14} m | | C1
A1 | [2] | | | | | (iii) | | = h/p
= $(6.63 \times 10^{-34}) / (1.84 \times 10^{-14})$
= 3.6×10^{-20} N s | | C1
A1 | [2] | | Q8 | • | | | | | | | | | 8 | (a |) (i) |) nu | mber | = $(5.1 \times 10^{-6} \times 6.02 \times 10^{23}) / 241$
= 1.27×10^{16} | C1
A1 | [2] | à. | | | | (ii) | 5.9 | | $^{5} = \lambda \times 1.27 \times 10^{16}$
$5 \times 10^{-11} \mathrm{s}^{-1}$ | C1
A1 | [2] | | | | | (iii) | 4.6
t _{1/2} | = 1. | $0^{-11} \times t_{\frac{1}{2}} = In2$
$49 \times 10^{10} s$
70 years | C1
A1 | [2] | ĺ | | | (b |) sa | ample | e / acti | vity would decay appreciably whilst measurements are being made | В1 | [1] | | | Q9 | | | | | | | | | | 8 | (a | a) (i | i) Fe | e shov | vn near peak | A1 | | [1] | | | | (ii | i) Zı | show | n about half-way along plateau | A1 | | [1] | | | | (iii | i) H | show | n at less than 0.4 of maximum height | A1 | | [1] | | | (b |) (i | | | large nucleus breaks up / splits
nuclei / fragments of approximately equal mass | M1
A1 | | [2] | | | | (ii | | | energy of nucleus = $B_E \times A$
energy of parent nucleus is less than sum of binding energies | B1 | | | | | | | | fragn | | B1 | | [2] | Q10. | 8 | (a) | energy required to separate nucleons in a <u>nucleus</u> to infinity | M1
A1 | [2] | |-----|-----|---|--------------------------|-----| | | (b) | $1u = 1.66 \times 10^{-27} \text{ kg}$ $E = mc^2$ $= 1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ $= 1.49 \times 10^{-10} \text{ J}$ | C1
M1 | | | | | = $(1.49 \times 10^{-10}) / (1.6 \times 10^{-13})$
= 930 MeV | M1
A0 | [3] | | | (c) | (i) $\Delta m = 2.0141 \text{u} - (1.0073 + 1.0087) \text{u}$
= $-1.9 \times 10^{-3} \text{u}$ | C1 | | | | | binding energy = $1.9 \times 10^{-3} \times 930$
= 1.8MeV | A1 | [2] | | | | (ii) $\Delta m = (57 \times 1.0087u) + (40 \times 1.0073u) - 97.0980u$ | C1 | | | | | = (-)0.69 u
binding energy per nucleon = (0.69 × 930) / 97
= 6.61 MeV | C1
A1 | [3] | | Q11 | | | | | | 9 | (a) | (i) either probability of decay (of a nucleus) per unit time or $\lambda = (-)(dN/dt) / N$ (-)dN/dt and N explained | M1
A1
(M1)
(A1) | [2] | | | | (ii) in time $t_{\%}$, number of nuclei changes from N_0 to $\frac{1}{2}N_0$ $\frac{1}{2} = \exp(-\lambda t_{\%})$ or $2 = \exp(\lambda t_{\%})$ In $(\frac{1}{2}) = -\lambda t_{\%}$ and In $(\frac{1}{2}) = -0.693$ or In $2 = \lambda t_{\%}$ and In $2 = 0.693$ 0.693 = $\lambda t_{\%}$ | B1
B1
B1
A0 | [3] | | | (b) | 228 = 538 exp(-8λ)
λ = 0.107 (hours ⁻¹)
$t_{\frac{1}{2}}$ = 6.5 hours (do not allow 3 or more SF) | C1
C1
A1 | [3] | | | (c) | e.g. random nature of decay background radiation daughter product is radioactive (any two sensible suggestions 1 each) | R2 | [2] | Q12. | 8 (a) <u>nuclei</u> having same number of protons/proton (atomic) number
different numbers of neutrons/neutron number
(allow second mark for nucleons/nucleon number/mass number/atomic
mass if made clear that same number of protons/proton number) | B1
B1 | [2] | |---|------------------------|-----| | (b) probability of decay per unit time is the decay constant | C1 | | | $\lambda = \ln 2 / t_{\frac{1}{2}}$ = 0.693 / (52 × 24 × 3600) = 1.54 × 10 ⁻⁷ s ⁻¹ | C1
A1 | [3] | | (c) (i) $A = A_0 \exp(-\lambda t)$
$7.4 \times 10^6 = A_0 \exp(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600)$
$A_0 = 9.8 \times 10^6 \text{ Bq}$
(alternative method uses 21 days as 0.404 half-lives) | C1
A1 | [2] | | (ii) $A = \lambda N$ and mass = $N \times 89 / N_A$
mass = $(9.8 \times 10^6 \times 89) / (1.54 \times 10^{-7} \times 6.02 \times 10^{23})$ | C1 | | | $= 9.4 \times 10^{-9} g$ | A1 | [2] | | Q13. 8 (a) two (light) nuclei combine | M1 | | | 8 (a) two (light) nuclei combine to form a more massive nucleus | A1 | [2] | | (b) (i) $\Delta m = (2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$
= $5.33 \times 10^{-3} \text{ u}$
energy = $c^2 \times \Delta m$
= $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2$
= $8.0 \times 10^{-13} \text{ J}$ | C1
C1 | [3] | | (ii) speed/kinetic energy of proton and deuterium must be very large
so that the nuclei can overcome electrostatic repulsion | B1
B1 | [2] | | Q14. | | | | 8 (a) energy is given out / released on formation of the α -particle (or reverse argu- | iment) M1 | | | either $E = mc^2$ so mass is less
or reference to mass-energy equivalence | A1 | [2] | | (b) (i) mass change = $18.00567 u - 18.00641 u$ | C1 | ro1 | | = 7.4×10^{-4} u (sign not required) | A1 | [2] | | (ii) energy = $c^2 \Delta m$
= $(3.0 \times 10^8)^2 \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27}$
= 1.1×10^{-13} J
(allow use of u = 1.67×10^{-27} kg)
(allow method based on 1u equivalent to 930 MeV to 933 MeV) | C1
A1 | [2] | | (iii) either mass of products greater than mass of reactants this mass/energy provided as kinetic energy of the helium-4 nucle or both nuclei positively charged energy required to overcome electrostatic repulsion | eus A1
(M1)
(A1) | [2] | Q15. | 8 (| (a) | | bability
unit tim | | | •••••• | | [2] | | |------|-------------------------|--|------------------------|---|--|---|----------|------------------|-----| | (| (b) | A : | = λN . | (ignore sign) |) | | B1 | [1] | | | | | | | | 2 | | | | | | *** | (c) (i)
(ii)
(iii | l n
nur
) λΤ _{1/2}
λ = | nber = 0.69
= 0.693 | ns $41.7 \times N_A = (2.5 \times 10^{25}) / (3)$
7.56 = 0.0124
$7.0124 \times 1.67 = 0.0124$ | = 2.5×10^{2}
1.5×10^{21})
s ⁻¹ | ⁵ molecules
= 1.67 × 10 ⁴ | A1
A1 | [5] | | | Q16. | | | | | | | | | | | 6 | (a) | (i) | either | probability of
per unit time | decay or | $dN/dt = (-)\lambda N$ OR A with symbols explained | = (-)λN | 1 | [2] | | | | (ii) | (paren
nucleu | r energy of α
t) nucleus less
s more likely t
Radium-224 | s stable | eans | | 0
1
1
1 | [3] | | | (b) | (i) | either . | $\lambda = \ln 2/3.6$
= 0.193 | or | $\lambda = \ln 2/3.6 \times 24 \times 3$
= 2.23 x 10 ⁻⁶ | 600 | 1 | | | | | | unit | day -1 | | s ⁻¹ | | 1 | [2] | | | | | (one si | ig.fig., -1, allo | w λ in hr ⁻¹) | | | | | | | | 3 5 | = 6.0 | .24 x 10 ⁻³)/224
2 x 10 ¹⁸ | 4} x 6.02 x | 10 ²³ | | 1 | | | | | | activity | $= 2.23 \times 10^{-6}$ $= 1.3 \times 10^{13}$ | | 018 | | 1
1 | [4] | | | (c) | 0.1 =
n = 3. | | . n) | es 1 mark | | | 1 | [2] | Q17. | 7 | (a)(i) | energy required to separate the nucleons in a nucleusnucleons separated to infinity / completely | M1
A1 | | [2] | |-----|---------|--|----------|----------|-----| | | (ii) | S shown at peak | B1 | | [1] | | | (b)(i) | 4 | A1 | | [1] | | | (ii)1 | . idea of energy as product of <i>A</i> and energy per nucleon energy = (8.37 × 142 + 8.72 × 90) – 235 × 7.59 = 1189 +785 – 178 | C1 | | | | | | = 190 MeV(-1 for each a.e.) | A2 | | [3] | | | 2 | 2. energy = mc^2
1 MeV = 1.6×10^{-13} J
energy = $(190 \times 1.6 \times 10^{-13}) / (3.0 \times 10^8)^2$ | C1
C1 | | | | | | $= 3.4 \times 10^{-28} \text{ kg}$ | A1 | | [3] | | Q18 | 3. | | | | | | 8 | (a) (i) | either number = $6.02 \times 10^{23} \times (\{2.65 \times 10^{-6}\}/234)$
or number = $(2.65 \times 10^{-9})/(234 \times 1.66 \times 10^{-27})$
= 6.82×10^{15} | | C1
A1 | [2] | | | (ii) | $A = \lambda N$
$604 = \lambda \times 6.82 \times 10^{15}$
$\lambda = 8.86 \times 10^{-14} \text{ s}^{-1}$ | | C1
A1 | [2] | | | (iii) | $T_{1/2} = \ln 2/\lambda$
= 7.82 x 10 ¹² s
= 2.48 x 10 ⁵ years | | C1
A1 | [2] | | | (b) hal | f-life is (very) long (compared with time of counting) | | B1 | [1] | | | (c) the | re would be appreciable decay of source during the taking of measurements | | B1 | [1] | Q19. | 7 | (a) | ene | rgy req | uired to (completely) separ | ate the nucleons (in a nucleus)B1 | [1] | |---|-----|-------------------|-----------------------------|--|-----------------------------------|-----| | | (b) | (i) | U labe
Ba and | lled near right-hand end of
d Kr in approximately correc | line | [2] | | | | (ii) | | | B1 | | | | | | or | binding energy of U < bind
E_B of U < E_B of (Ba + Kr). | B1 | [2] | | | (c) | Kry | pton-92 | reduced to 1/8 in 9 s | M1 | | | | | in 9
so,
OR | approx | little decay of Barium-141
imately 9 s | M1 | [3] | | | | 2Kr | = 0.231 | or $\lambda_{Ba} = 6.42 \times 10^{-4}$ | (M1) | | | | | 8 = | $e^{-\lambda B \times t}/e$ | -λK×t | (C1) | | | | | t = 9 | 9.0 s | | (A1) | | | | | | | | | | ### Q20. | 8 | (a) | neutron is a single nucleon / particleB1 | [1] | |---|-----|---|-----| | | (b) | binding energy = $4 \times 7.07 \times 1.6 \times 10^{-13}$ | | | | | binding energy = $c^2 \Delta m$ | | | | | $4.52 \times 10^{-12} = (3.0 \times 10^8)^2 \times \Delta m$
$\Delta m = 5.03 \times 10^{-29} \text{ kg}$ A1 | [3 | | | (c) | (i) fusion(do not allow fussion)B1 | [1 | | | | (ii) (2 × 1.12) + 3x = 28.28 | | | | | x = 2.78 MeV per nucleon A1 (use of +17.7 gives $x = 14.6 MeV$, allow 1 mark only) | [3 | [Total: 8] Q21. | 8 | (a) | (constant) probability of decay per unit time (reference to decay of isotope / mass / sample / nuclide, allow max 1 mark) | | [2] | |-----|-----|--|----------------|--------| | | (b) | either when time = $t_{\%}$, $N = \frac{1}{2}N_0$
or $\frac{1}{2}N_0 = N \exp(-\lambda t_{\%}) t_{\%}$
either $2 = \exp(\lambda t_{\%})$
or $\frac{1}{2} = \exp(-\lambda t_{\%})$
(taking logs), $\ln 2 = 0.693 = \lambda t_{\%}$ | M1 | [3] | | | (c) | $A = \lambda N$
$1.8 \times 10^5 = N \times (0.693 / \{1.66 \times 10^8\})$
$N = 4.3 \times 10^{13}$
mass = $60 \times (N/N_A)$ or $60 \times N \times u$ | | | | | | = $(60 \times 4.3 \times 10^{11}) / (6.02 \times 10^{23})$
= 4.3×10^{-9} g | A1 | [3] | | | | | [Tot | al: 8] | | Q22 | • | | | | | 8 | (a) | splitting of a heavy nucleus (not atom/nuclide) into two (lighter) nuclei of approximately same mass | M1
A1 | [2] | | | (b) | $_{0}^{1}$ n $_{2}^{4}$ He (allow $_{2}^{4}\alpha$) $_{3}^{7}$ Li | M2
A1 | [3] | | | (c) | emitted particles have kinetic energy range of particles in the control rods is short / particles stopped in rods / lose kinetic energy in rods kinetic energy of particles converted to thermal energy | B1
B1
B1 | [3] | | Q23 | | | | | | 8 | (a) | (i) time for initial number of nuclei/activity to reduce to one half of its initial value | M1
A1 | [2] | | | | (ii) $\lambda = \ln 2/(24.8 \times 24 \times 3600)$
= 3.23 × 10 ⁻⁷ s ⁻¹ | M1
A0 | [1] | | | (b) | (i) $A = \lambda N$
$3.76 \times 10^6 = 3.23 \times 10^{-7} \times N$
$N = 1.15 \times 10^{13}$ | C1
A1 | [2] | | | | (ii) $N = N_0 e^{-\lambda t}$
= 1.15 × 10 ¹³ × exp(-{ln 2 × 30}/24.8)
= 4.97 × 10 ¹² | C1
A1 | [2] | | | (c) | ratio = $(4.97 \times 10^{12})/(1.15 \times 10^{13} - 4.97 \times 10^{12})$
= 0.76 | C1
A1 | [2] | ## Q24. | 8 | (a) | (i) | probability of decay (of a nucleus) per unit time | M1
A1 | [2] | |-----|-----|---------|--|----------------------|-----| | | | (ii) | $\lambda t_{\frac{1}{2}} = \ln 2$
$\lambda = \ln \frac{2}{(3.82 \times 24 \times 3600)}$
$= 2.1 \times 10^{-6} \text{ s}^{-1}$ | M1
A0 | [1] | | | (b) | 20
N | $= \lambda N$ $00 = 2.1 \times 10^{-6} \times N$ $= 9.5 \times 10^{7}$ $= 9.5 \times 10^{25} 10^{25$ | C1
C1 | | | | | rai | tio = $(2.5 \times 10^{25})/(9.5 \times 10^7)$
= 2.6×10^{17} | A1 | [3] | | Q25 | | | | | | | 8 | (a) | (i) | x = 2 | A1 | [1] | | | | (ii) | either beta particle or electron | B1 | [1] | | | (b) | (i) | mass of separate nucleons = {(92 × 1.007) + (143 × 1.009)} u
= 236.931 u
binding energy = 236.931 u - 235.123 u | C1
C1 | | | | | | = 1.808u | A1 | [3] | | | | (ii) | $E = mc^{2}$ energy = 1.808 × 1.66 × 10 ⁻²⁷ × (3.0 × 10 ⁸) ² = 2.7 × 10 ⁻¹⁰ J binding energy per nucleon = (2.7 × 10 ⁻¹⁰) / (235 × 1.6 × 10 ⁻¹³) = 7.18 MeV | C1
C1
M1
A0 | [3] | | | (c) | en | ergy released = (95 × 8.09) + (139 × 7.92) – (235 × 7.18)
= 1869.43 – 1687.3 | C1 | | | | | (al | = 182 MeV
llow calculation using mass difference between products and reactants) | A1 | [2] | | Q26 | | | | | | | 8 | (a | | nergy to separate nucleons (in a nucleus) eparate to infinity | M1
A1 | [2] | | | (b |) (i) |) fission | B1 | [1] | | | | (ii) | 1. U: near right-hand end of line | B1 | [1] | | | | | 2. Mo: to right of peak, less than 1/3 distance from peak to U | B1 | [1] | | | | | 3. La: $0.4 \rightarrow 0.6$ of distance from peak to U | B1 | [1] | (iii) 1. right-hand side, mass = 235.922 u mass change = 0.210 u A1 [2] 2. energy = $$mc^2$$ C1 = $0.210 \times 1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ C1 = 3.1374×10^{-11} J C1 = 196 MeV (need 3 s.f.) A1 [3] (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV or 932 MeV, allow 2/3) (use of 1.67×10^{-27} not 1.66×10^{-27} scores max. 2/3) #### Q27. 8 (a) probability of decay (of a nucleus)/fraction of number of nuclei in sample that decay M1 per unit time A1 [2] A1 [2] (b) (i) number = $$(1.2 \times 6.02 \times 10^{23}) / 235$$ C1 = 3.1×10^{21} A1 [2] © Cambridge International Examinations 2013 | Page 5 | Mark Scheme | Syllabus | Paper | |--------|-------------------------------------|----------|-------| | 1 | GCE A LEVEL – October/November 2013 | 9702 | 43 | (ii) $$N = N_0 e^{-\lambda t}$$ negligible activity from the krypton B1 for barium, $N = (3.1 \times 10^{21}) \exp(-6.4 \times 10^{-4} \times 3600)$ C1 activity $= \lambda N$ $= 6.4 \times 10^{-4} \times 3.1 \times 10^{20}$ C1 $= 2.0 \times 10^{17} \text{ Bq}$ A1 [4] Q28. 10 (a) energy required to separate the nucleons (in a nucleus) to infinity (allow reverse statement) (b) (i) $$\Delta m = (2 \times 1.00867) + 1.00728 - 3.01551$$ C1 $= 9.11 \times 10^{-3} \text{ u}$ C1 binding energy $= 9.11 \times 10^{-3} \times 930$ $= 8.47 \text{ MeV}$ (allow $930 \text{ to } 934 \text{ MeV so answer could be in range } 8.47 \text{ to } 8.51 \text{ MeV}$) (allow 2 s.f.) (ii) $\Delta m = 211.70394 - 209.93722$ C1 $= 1.76672 \text{ u}$ binding energy per nucleon $= (1.76672 \times 930)/210$ C1 $= 7.82 \text{ MeV}$ (allow $930 \text{ to } 934 \text{ MeV so answer could be in range } 7.82 \text{ to } 7.86 \text{ MeV}$) (allow 2 s.f.) (c) $\frac{\text{total}}{\text{total}}$ binding energy of barium and krypton is greater than binding energy of uranium M1 $= (2)$ C29. 9 (a) $\frac{\text{time for number of atoms/nuclei/activity (of the isotope)}}{\text{to be reduced to one half (of its initial value)}}$ M1 $= (2)$ C1 (2$ © Cambridge International Examinations 2014 $= 3.3 \times 10^{25}$ (ii) number of water molecules in 1.0 kg = $(6.02 \times 10^{23})/(18 \times 10^{-3})$ ratio = $(3.3 \times 10^{25})/(4.6 \times 10^8)$ $= 7.2 (7.3) \times 10^{16}$ www.maxpapers.com C1 A1 [2] M1 | Page 5 | Mark Scheme | Syllabus | Paper | 1 | |---------------------------------------|--|----------|-------|-----| | , , , , , , , , , , , , , , , , , , , | GCE A LEVEL – May/June 2014 | 9702 | 42 | | | (c) $A = A_0 \in$ | $e^{-\lambda t}$ and $\lambda t_{1/2} = \ln 2$ | | C1 | | | 170 = 46 | 60 exp (-{In 2 t}/8.1) | | C1 | | | t = 11.6 | days (allow 2 s.f.) | | A1 | [3] | 9 (a) 'light' nuclei combine to form 'heavier' nuclei B1 [1] (b) (i) either energy = $$c^2 \Delta m$$ or energy = $(3.00 \times 10^8)^2 \times 1.66 \times 10^{-27}$ energy = 1.494×10^{-10} C1 = $(1.494 \times 10^{-10})/(1.60 \times 10^{-13})$ = 934 MeV (3 s.f.) An = $(2.01356 + 3.01551) - (4.00151 + 1.00867)$ (ii) $$\Delta m = (2.01356 + 3.01551) - (4.00151 + 1.00867)$$ = 5.02907 - 5.01018 = 0.01889 u energy = $$0.01889 \times 934$$ = $17.6 \text{MeV} (allow 2 \text{ s.f.})$ A1 [2] ### Q31. 9 (a) activity = $$(1.7 \times 10^{14})/(2.5 \times 10^{6})$$ = $6.8 \times 10^{7} \text{ Bq kg}^{-1}$ A1 [1] (b) (i) energy released per second in 1.0 kg of steel $$= 6.8 \times 10^{7} \times 0.067 \times 1.6 \times 10^{-13} \\ = 7.3 \times 10^{-7} \text{ J}$$ B1 [1] © Cambridge International Examinations 2014 | Page 5 | Mark Scheme | Syllabus | Paper | | |--------|--|----------|----------------------|-----| | | Cambridge International AS/A Level - October/November 2014 | | 43 | | | (ii |) this is a very small quantity of energy so steel will not be warm | | B1 | [1] | | (iii |) $A = A_0 e^{-\lambda t} \frac{\text{and}}{\text{and}} \lambda t_{\frac{1}{2}} = \ln 2$
$400 = (6.8 \times 10^7) \exp(-[\ln 2 \times t]/92)$ | | C1
C1 | | | | t = 1600 years | | A1 | | | | or | | | | | | $A = A_0/2^n$
n = 17.4
$t = 17.4 \times 92 = 1600 \text{ years}$ | | (C1)
(C1)
(A1) | [3] |